男科 | 妇科 | 骨科 | 耳鼻喉 | 肛肠 | 泌尿 | 不孕不育 | 皮肤病 | 口腔 | 肿瘤 | 糖尿病 | 眼病 | 性病 | 肝病 | 心血管 | 更多 |
视网膜色素变异
玻璃体内注射CNTF的类似物可以对感光细胞产生明显的保护作用[21]。rd小鼠视网膜下注射胶质细胞源性神经营养因子(GDNF)的实验表明它对感光细胞亦有保护作用[22]。此外,脑源性神经营养因子(BDNF)、IL-1、IL-6等生长因子对RP的治疗作用,也实验报告。
九、其他
二、神经营养因子
氢化麦角碱(Hydergine)是另外一个被FDA许可的应用于痴呆治疗的药物。它不能扩张血管,是通过维持神经递质平衡而改善大脑的新陈代谢,也作为一种抗氧化剂起作用。Picamilon是俄罗斯许可的由γ-氨基丁酸(GABA)与烟碱酸共价结合的药物。研究表明,它能改善大脑循环。最近的俄罗斯研究发现它能增加RP病人的低灌注压[40]。
维生素A是人体不可缺少的脂溶性维生素,在视网膜中VitaminA通过其衍生物-视黄醛与视蛋白结合形成视紫红质,参与光电转化反应。VitaminA缺乏首先引起视杆细胞敏感度下降,并最终出现视杆和视锥细胞的外节盘膜丢失。Maw等[6]发现部分RP病人视网膜细胞内编码脱氢视黄醛结合蛋白的基因发生变异时,会导致11-顺-视黄醛和11-顺脱氢视黄醛不能有效地被转运,从而引起眼局部VitaminA代谢异常。Debra等[7]认为基因突变引起的眼局部VitaminA代谢异常是导致RP发病的重要分子学发病机制,即VitaminA代谢异常进一步导致视网膜细胞的氧自由基损害增加,引起感光细胞及视网膜色素上皮细胞的凋亡。
一、维生素
是人体中一种有重要功能的长链不饱和脂肪酸,其前体物质-α亚麻酸在体内不能合成,只有从外界直接摄取。DHA具有的高度不饱和性直接影响生物膜的流动性,进而影响蛋白质活性、生物信号传递及受体功能。DHA在视网膜中含量很丰富,主要存在于视杆细胞的外节中。有研究者观察到在各种遗传型RP病人血浆中的DHA浓度下降[29]。红细胞磷脂膜中的脂肪酸含量最能反映神经细胞中的脂肪酸含量。特此,SimonelliF,等[29]对RP病人红细胞中的DHA进行研究表明,红细胞磷脂膜中的脂肪酸含量减少是脂质代谢异常的指示,能破坏视网膜细胞膜的完整性。有研究者认为视杆细胞外节中的DHA含量下降是由于基因突变导致代谢异常的结果[30]。但近来对P23H鼠给予DHA治疗的研究表明,虽然视杆细胞外节中的DHA含量提高了,但感光细胞的功能并没有改变[31]。
大量的抗氧化补充物已被应用到临床上,因为它们的活性不强,一般只是通过组合使用,才能达到保护视网膜的效果。现主要介绍下列抗氧化剂,园括号里的是它们的每日剂量。⑴维生素A(10000-20000IU),根据上述的假设,它是抵抗光诱导自由基反应的间接抗氧化剂或保护剂;⑵维生素E(200IU)和⑶硒,两者都是抗氧化剂,但大计量的硒应该避免,因为高浓度就会有毒性;⑷维生素c(300mg),在无机铁存在的情况下,它有启动凋亡的作用。因此,建议避免与铁补充物合用。⑸叶黄素(6-12mg)和⑹玉米黄质(6-12mg),两者都是中央视力的特殊保护物质;⑺β-胡罗卜素(10000-15000IU);⑻锌(15mg);⑼N-乙酰半胱氨酸(2或3×500mg),是一种非常重要但不稳定的抗氧化谷胱甘肽;⑽辅酶Q-10(50-200mg)是一种抗氧化剂和线粒体呼吸作用的辅助因子;⑾α-硫辛酸(100mg),是一种特殊的线粒体抗氧化剂。
八、传统中医药
有临床眼科医生建议采取广泛的营养补充法来维护包括AMD和RP的各种临床病的视网膜功能[37-38]。营养补充的主要目的是:⑴保护视网膜细胞以抵抗氧化损害;⑵改善视杆/视锥细胞关键成分和线粒体膜结构。⑶通过维持脉络膜及视网膜血管系统的完整性以确保视杆和视锥细胞的有效氧供。循环不足(也就是缺血)是凋亡的确却因素。另外,避免视网膜毒性物质被眼科医师强烈推荐。毒素包括以下这些:⑴食物添加剂谷氨酸一钠(味精);⑵甲氧萘丙酸,布洛芬,和类似的非甾体抗炎药物。因为这些药物能损害视网膜毛细血管;⑶含铁的维生素补充物,因为铁能作为脂肪过氧化反应的催化剂;⑷钙补充物,因为钙能干预毛细血管循环;⑸烟;⑹酒精,这是为了保持最佳的肝功能以得到最适宜的维生素A和谷胱甘肽供给。避免以下的物质也很重要:⑺过分的精神压力将降低肾上腺素水平,这能削弱眼毛细血管屏蔽而导致渗出和组织损害;和⑻强烈的太阳光,特别是它的蓝光成分,使用阻碍蓝光的眼镜是有效的。
通道阻滞剂作为防治心血管疾病的有效药物广泛应用于临床,在青光眼的视神经保护药物中,也正被广泛研究。Ca2+通道阻滞剂可以直接阻断神经细胞的钙离子通道,并可通过松弛视网膜血管平滑肌、扩张血管,改善视网膜的血流灌注,从而阻断缺血所诱发的细胞凋亡,还可以加快视网膜局部代谢产物的清除,达到挽救感光细胞的目的。在RP动物模型中,目前研究较多的是地尔硫卓(diltiazem)。
对RP和其他的神经变性疾病的Encad治疗方法在1988年被俄罗斯药物局初步许可,在1992年最后许可。Encad是一种不知成分的酵母菌RNA的水解产物。它是在俄罗斯Kharkov,Ukraine城市的国有制药企业生产的。Encad疗法是以实验性遗传RP老鼠(CampbellLine)中RNA减少这一特性为基本原理,在1978年开始了最初的动物试验。在动物试验中,这种药物被报道可以增加视紫红质的再合成和减少视网膜的变性。根据这一结果,在1982年Katznelson博士开始临床试验。在1990年,第一份临床结果报告出现在西方文献中。Encad可采用不同给药方法,如10天一个疗程的肌肉注射,每6-10月重复一次,另一个给药方法包括球结膜下注射和使用超声洗眼杯。由于Encad疗法临床疗效研究采用了不严格统计评估,其疗效遭到西方学者的质疑[25]。
由于上述营养补充法的复杂性,所以在双盲安慰剂控制的临床试验中研究这些方法是不可能的。然而,这些物质用途的基本生化机制在无数的回顾性科学研究中得到研究。
的目前主要治疗方法可分为:药物治疗(包括神经营养因子)、基因治疗、视网膜移植手术治疗等。视网膜移植手术治疗有视网膜感光细胞、干细胞、色素上皮细胞及虹膜色素上皮细胞的移植,其治疗的技术不成熟,容易产生严重并发症,疗效亦不确切。视网膜色素变异十余年来,数个国家的一百多例人类临床(手术)移植研究却发现术后效果并不明显[1-2],这使国际临床眼科界对用视网膜(细胞)移植手术治疗视网膜色素变性的兴趣大减,从而将研究重点转向如何延缓光感受器细胞变性、延长病人有用视力时间的临床方法研究。基因治疗在理论上应该是最理想的治疗方法,但由于RP具有遗传异质性及多效性,因此基因改变与视网膜色素变性临床表现之间的关系非常复杂。目前还难以阐明这种关系[3],使对该病的基因治疗难以找到切入点,因此对该病的基因治疗难以得到有关机构的批准,何况已有临床基因治疗导致病人死亡的报导[4-5],因此在解决基因治疗的切入点及安全性问题以前,临床上对视网膜色素变性的基因治疗还不现实。目前及未来10年在临床上能真正得到应用的治疗方法,只有药物治疗。本文就目前的临床、临床试验性及实验性药物治疗方法研究进展作如下综述。
鼠是由于编码视杆细胞cGMP磷酸二酯酶β亚单位的基因突变,cGMP无法水解,局部浓度过高而引起感光细胞凋亡。正常生理条件下,开放的cGMP门控Ca2+通道数量很少,因此通过该通道进入细胞内的Ca2+量很少[32]。cGMP浓度增加时,导致cGMP门控Ca2+通道大量开放,过多的Ca2+进入细胞质中,从而导致线粒体内Ca2+增加,进一步引起线粒体大孔(PTP)的开放,线粒体向细胞质内释放细胞色素C及其他能激活凋亡的酶蛋白,触发细胞的凋亡[33-34]。有报道称对Rd鼠腹腔注射地尔硫卓,结果表明视网膜内残留视杆和视锥细胞数量、ERG中的a和b波振幅均较对照组增多[35]。但最近Pearce-KellingSE等[36]的对PDE6B基因突变的狗RP模型应用地尔硫卓治疗实验结果表明,用ERG和组织病理学检测,并没有发现地尔硫卓对感光细胞有积极的作用。另外,如果应用钙离子通道阻滞剂治疗RP病人,其剂量可能要远大于目前药典的法定用量,长期应用可能会对机体产生不良后果。
六、钙离子通道阻滞剂
●患者性别:男
尽管玻璃体内注射bFGF是有效的,但bFGF不能口服、作用时间短暂,而且高浓度的bFGF反复玻璃体内注射易导致视网膜出血和脱离、感染、白内障及新生血管形成等诸多并发症[14]。因此,神经营养因子多与基因治疗相结合。Akimoto等[15]应用带有CMV增强子和bFGF基因的腺病毒悬液注射到视网膜下腔的实验表明,病毒转导以较小的体内分泌量到达bFGF较大蛋白注射量的同等挽救效果,同时降低了较大蛋白注射量引起的副作用。Lau等[16]应用带有CMV增强子的无致病性腺相关病毒(rAAV)携带bFGF目的基因注射到转基因鼠的视网膜下腔,结果表明在注射60天后,感光细胞的外核层厚度比对照组显着要厚,病理组织学检查未发现明显的新生血管形成。
神经免疫抑制剂(如Neuroimmunophilin配体)有神经再生特性,而没有固定的免疫抑制的副作用。另外,这些化合物优于神经生长因子,通过口服它们很容易地到达神经损害的地方,像神经生长因子一样,对受损细胞而不对正常细胞起作用。争取FDA许可的临床试验目前正在进行[25]。
神经营养因子存在于神经组织内,对神经元生存、发育和凋亡有重要的调节作用[9]。神经营养因子主要是通过抑制视网膜细胞凋亡而达到对RP的治疗效果。现已证实眼组织内存在的神经营养因子包括:睫状神经营养因子(CNTF)、成纤维细胞生长因子(FGF)、胶质细胞源性神经营养因子(GDNF)、转化生长因子-α、β(TGF-α、β)及血小板源性生长因子(PDGE)等[10-12]。它们主要由RPE及Muller细胞产生。
等人[23]发现抗帕金森病药物eldepry1的代谢物desmethldeprenyl能引起bcl-2的过量表达和bax基因的抑制。bcl-2的过量表达也就是bcl-2蛋白量的提高,通过bcl-2蛋白粘附到线粒体膜外而抑制PTP的开放来抑制凋亡。另一个抗凋亡物质即环胞霉素A也通过类似机制起作用。研究表明eldepry1的应用浓度大约为1-2mg/100Kg/天,也就是治疗帕金森病浓度的1/10。在Berkeley和加利佛尼亚技术学院的一个联合研究中发现了在RP转基因模型中bcl-2的过量表达能预防或是减慢凋亡[24]。根据这些发现,看来应用1-2mg/100Kg/天剂量的deprenyl可以通过抑制凋亡而对RP有作用。测试这一假说的临床研究正在被Ianus基金计划[25]。
.神经免疫抑制剂
虽然RP具有遗传异质性及多效性,其致病突变基因众多及临床表现复杂,但其最终共同途径是感光细胞的凋亡,导致视力丧失。RP有两种治疗策略可采用:一种是在疾病早期治疗防止感光细胞丢失,即“感光细胞的营救”;另一种是在疾病晚期替换丢失的感光细胞。就目前医学技术而言,要成功替换感光细胞还有很大的困难,而“感光细胞的营救”更切实际。上述的药物治疗方法都属于“感光细胞的营救”。维生素A在临床上应用最为广泛,但其只能减缓而不是阻止RP的病程进展。神经营养因子治疗的合理给药途径还有待于研究改进,雪旺氏细胞移植的研究可能会很好的解决这一问题。目前对RP的基本生化机制和实验性治疗的分析,暗示了一个有效的治疗方法似乎是关注于减少由于凋亡和光对视网膜作用产生的自由基损害。特别是寻找为了维持中央视力而保护遗传性能完好的视锥细胞的治疗方法。这一策略能通过1-2mg/100Kg/每日的deprenyl(通过它的代谢产物desmethyl-deprenyl起到抗凋亡作用)的应用得到实现,抗凋亡药物的开发对RP治疗很有价值。另外,避免视网膜毒性物质、防止过度的光照射(特别是蓝光)、保持微循环和摄入支持视杆/锥细胞与线粒体的结构及功能的重要营养物质对RP的治疗也很重要。深入研究RP突变基因引发感光细胞凋亡的具体机制,对治疗RP特效药物的开发十分重要。